

Actions

Actions are events that happen as a result of user interaction with the
application. Using our podcastId state example above, a user could
select a specific podcast and the application would filter based on this
specific podcast.
The Action class always includes a type property representing the action
being dispatched.

import { Action } from '@ngrx/store';

export enum ActionTypes {

 SELECT_PODCAST = '[alsoa.ui.podcast.component] SELECT_PODCAST',

 REQUEST_FAILURE = '[alsoa.ui.podcast.component] REQUEST_FAILURE'

}

export class SelectPodcastAction implements Action {

 public readonly type = ActionTypes.SELECT_PODCAST;

 constructor(public payload: string) { }

}

export class RequestFailureAction implements Action {

 public readonly type = ActionTypes.REQUEST_FAILURE;

}

export type Actions = SelectPodcastAction

 | RequestFailureAction;

The class SelectPodcastAction includes a type property
of [alsoa.ui.podcast.component] SELECT_PODCAST', along with payload property
of type string. The payload represents the action data associated with
the action necessary to complete the action.

Reducer

The reducer generates a new state based on the action dispatched and
any payload information contained within the action. These files
contain a switch statement for any action that changes and returns the
new state. Get familiar with the spread syntax as a mechanism to
preserve immutability.

import { initialState, State } from './state';

import { Actions, ActionTypes } from './actions';

const {

 SELECT_PODCAST,

 REQUEST_FAILURE

} = ActionTypes;

export function featureReducer(state: State = initialState, action: Actions) {

 switch (action.type) {

 case SELECT_PODCAST:

 return {

 ...state,

 podcastId: action.payload

 };

 case REQUEST_FAILURE:

 default:

 return state;

 }

};

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax

Declaring an action creator

Without additional metadata:
export const increment = createAction('[Counter] Increment');

With additional metadata:

export const loginSuccess = createAction(

 '[Auth/API] Login Success',

 props<{ user: User }>()

);

With a function:

export const loginSuccess = createAction(

 '[Auth/API] Login Success',

 (response: Response) => response.user

);

Dispatching an action

Without additional metadata:
store.dispatch(increment());

With additional metadata:
store.dispatch(loginSuccess({ user: newUser }));

Referencing an action in a reducer

Using a switch statement:

switch (action.type) {

 // ...

 case AuthApiActions.loginSuccess.type: {

 return {

 ...state,

 user: action.user

 };

 }

}

Using a reducer creator:
on(AuthApiActions.loginSuccess, (state, { user }) => ({ ...state,

user }))

Referencing an action in an effect

effectName$ = createEffect(

 () => this.actions$.pipe(

 ofType(AuthApiActions.loginSuccess),

 // ...

));

https://ngrx.io/api/store-devtools/DevToolsFeatureOptions#export
https://ngrx.io/api/store/createAction
https://ngrx.io/api/store-devtools/DevToolsFeatureOptions#export
https://ngrx.io/api/store/createAction
https://ngrx.io/api/store/props
https://ngrx.io/api/store-devtools/DevToolsFeatureOptions#export
https://ngrx.io/api/store/createAction
https://ngrx.io/api/store/on
https://ngrx.io/api/store-devtools/StoreDevtools#state
https://ngrx.io/api/effects/createEffect
https://ngrx.io/api/effects/ofType

Selectors
Selectors provide a method to read slices of the state.

Combining selectors to retrieve slices of state and filtering through

necessary data can also be achieved.

Effects

Effects exist to change or retrieve the state of an external system. For
most of my use cases, effects communicate with a REST endpoint to
query, insert, update, and delete different entities. Effects begin
listening immediately for one or multiple actions.

	Actions
	Reducer
	Selectors
	Effects

